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The real null vector I ~ of the Newman-Penrose formalism is preferred to 
correspond to a geometrical symmetry as well as a dynamical symmetry. The 16 
types of geometrical symmetries expressed through the vanishing of the Lie 
derivatives of certain tensor fields with respect to I" are examined separately. 
Two types of dynamical symmetries are imposed simultaneously on I": A null 
electromagnetic field and a null gravitational field are both chosen to have the 
same propagation vector I". By adopting freedom conditions on I ", it is shown 
that the symmetries of the null electromagnetic field are shared neither by the 
free gravitational field nor by the gravitational potentials. In fact the following 
five preferred null symmmetries are found to be proper: motion, affine collinea- 
tion, special curvature collineation, curvature collineation, and Ricci colfineation. 
The scalars characterizing the coupled fields are found to be constant with 
respect to I". 

1. I N T R O D U C T I O N  

In the general  theory  of  re la t iv i ty  the curva ture  tensor  descr ib ing  the 
g rav i ta t iona l  f ield consis ts  of  two par ts ,  oiz., the ma t t e r  pa r t  and  the free 
g rav i ta t iona l  pa r t  (Szekeres,  1964). The  in te rac t ion  be tween  the two par t s  is 
desc r ibed  th rough  the Bianchi  identi t ies .  Unt i l  the advent  of  the 
N e w m a n - P e n r o s e  fo rmal i sm in 1962, the full impl ica t ion  of  the 24 Bianchi  
ident i t ies  cou ld  not  be exploi ted .  In  fact  the twice con t rac ted  Bianchi  
ident i t ies ,  which are  jus t  four  in number ,  p r o m p t e d  Eins te in  to ident i fy  the 
geomet r i c  ent i ty  (d ivergence-f ree  tensor),  R a b -  �89 ab with the d y n a m i c  

395 

0020-7748/84/0500-0395503.50/0 ~* 1984 Plenum Publishing Corporation 



396 Radhakrishna and Gumaste 

enti ty Tab, the stress energy momentum tensor of ponderable matter. For a 
given distribution of matter, the construction of gravitational potentials 
satisfying Einstein's field laws is the principal aim of all investigations in 
gravitation physics. Traditionally this has been accomplished by imposing 
symmetries on the geometry compatible with the dynamics of the chosen 
distribution of matter. Quite often the geometrical symmetries are express- 
ible through the vanishing of the Lie derivative (of certain tensors) with 
respect to a vector. This vector may be timelike, spacelike, or null. In this 
paper, we confine ourselves to the one-parameter group of symmetries 
comprising of motions as well as collineations with respect to a special null 
vector. In a series of papers, Davis and his collaborators (Davis, 1974a, 
1974b, 1977; Davis and Moss, 1963, 1970; Davis and York, 1969; (Davis 
et al., 1976) have identified 16 symmetries for the gravitational field and 
obtained the corresponding weak conservation laws as the integrals of the 
geodesic equations. 

In the absence of matter, the free null gravitational field with twisting 
rays admits at most one symmetry (Collinson, 1969), while for the non-null 
gravitational field the curvature collineation (CC) degenerates to conformal 
motion (Collinson, 1970). Collinson and Dodd (1971) have determined the 
Killing symmetries of the stationary axisymmetric empty space-times. The 
homothetic motions for algebraically special free gravitational fields in 
vacuum have been studied by Halford and Kerr (1980). Recently, Mclntosh 
(1980) has observed that there are very few space-times for which the CC 
are proper (i.e., do not degenerate to conformal motions). 

In the absence of the free gravitational field, a non-Einstein space with 
a nonzero scalar curvature does not admit a proper CC because it degener- 
ates to motion (Katzin, 1970). In these conformally flat spaces the CC and 
the special conformal motion are equivalent (Levine and Katzin, 1970). 

Different types of matter distributions compatible with the geometrical 
symmetries have attracted the attention of several investigators. Oliver and 
Davis (1977) have studied the timelike symmetries, with special reference to 
conformal motions and family of contracted Ricci collineations, for the 
space-times filled with perfect fluid. The nonexistence of proper homothetic 
spacelike motions in a space of constant curvature permeated by a magneto- 
fluid has been established by Prasad and Sinha (1979). Eardley (1964) has 
considered the perfect fluids which are homogeneous in cosmology and 
investigated that only a tilted cosmology can have a nontrivial homothetic 
vector. The perfect fluid space-times including electromagnetic fields admit- 
ting symmetry mappings belonging to the family of contracted Ricci collin- 
eations are studied by Norris et al. (1977). 

Khade and Radhakrishna (1974) have introduced the concept of 
Einstein collineation (which is different from the 16 symmetries) and 
investigated the preferred symmetries along the propagation vector and the 
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polarization vector. Similar symmetries have been studied for the magneto- 
fluid by Asgekar and Date (1975-76) and for a fluid collapsing with 
neutrino emission by Radhakrishna and Rao (1975-76). Lukacs et al. (1980) 
have recently proved the theorem that "when an electro-vacuum field 
admits a null Killing vector I", then either the principal null directions of 
the Maxwell field are Lie-propagated along I a or else the Maxwell field is 
degenerate or third, I a is hypersurface orthogonal." Tariq and Tupper (1977) 
have confined themselves to one symmetry (CC) for the electromagnetic 
field and showed that it degenerates to a conformal motion except for the 
null electromagnetic field and for the null gravitational field. 

The authors are not aware of any attempt at investigating all the 16 
symmetries for a given distribution of matter. Accordingly the simplest type 
of a nonempty field interacting with the simplest type of a free gravitational 
field is considered and all the symmetries of such a coupling are examined 
with respect to the real null vector I" of the Newman-Penrose (NP) tetrad. 

When a vector of a tetrad characterizes a geometrical symmetry or a 
dynamical symmetry or both, it is termed a preferred vector. For example 
(Synge, 1972), when a null vector is identified as the history of a massless 
particle with given 4-momentum tangent to a null line, then it is called a 
preferred null vector. Yet another instance of a preferred vector is when it is 
chosen as a Killing vector (Geroch et al., 1973). In this paper, the vector I ~ 
of the NP tetrad is given a preferential role. It is not only the propagation 
vector of the null electromagnetic field but also the propagation vector of 
the null gravitational field. 

The procedure adopted in this paper for getting the necessary and 
sufficient conditions for the existence of the different symmetries can be 
stated as follows: The tensorial differential equations characterizing a 
symmetry are transcribed into the NP formalism as algebraic equations in 
the form of linear combinations of the outer products of the tetrad Z~ with 
coefficients involving spin coefficients and their intrinsic derivatives. The 
required necessary and sufficient conditions follow (with effortless ease!) 
just by equating to zero each one of the coefficients. For instance, if Fff,. is 
the Christoffel symbol and 

. . ~ F ~ c  = , t a  7 a 7 ( , 8 ) 7 ( ' / )  .,1 Byz_,(a)~..,b ~-"c 
I 

then 

L~'Fffc = 0 '=" A'~/~y = 0 
I 

which is a sequel to the fact that the vectors Z~,~)(a =1,2,3,4)  form a basis 
and the outer products 7 a  7 ( ~ 8 ) Z  ('r) a ~(,~)~b c are independent. Here A ~, are func- 
tions of spin coefficients and their intrinsic derivatives. 
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After the investigation of these preferred null symmetries, it is shown 
that the symmetries of the null electromagnetic field are different from 
either the free gravitational field or the gravitational potentials. In fact the 
following five preferred null symmetries are found to be proper: motion, 
affine collineation, special curvature collineation, curvature collineation and 
Ricci collineation. 

In Section 2, the null electromagnetic field and the null gravitational 
field (i.e., the coupled fields) which are considered in this paper are 
delineated, while in Section 3, the conditions satisfied for the interaction of 
these two fields are listed. In the next section the five proper null symme- 
tries are investigated. A discussion of the scope of the results is given in the 
last section. 

2. THE COUPLED FIELDS 

Let Z~ = (I a, n a, m a, Ma) be an orthonormal null tetrad. Here I a, na 
are real null vectors and m a is a complex null vector with m a as its 
conjugate. These null vectors satisfy the following conditions: 

l a n a  = - -  m a m  a = 1 

i a  m a  = ia M a  = n a m a  = rl a M a  = 0 

l a l  a = ?la n a  = m a m  a = M a  M a  = 0 

The null electromagnetic field with I a as the eigenvector of the stress 
tensor T ab is characterized by (Debney and Zund, 1971) 

L b  = �89 (1) 
where q~ = 2FabMan b and 

Fab = (Pllamb] + t~-llambl 

is the electromagnetic field tensor with I[ambl = �89 b --Ibm~). Since F, bl h 
= 0, we identify ! a as the propagation vector of the field. The corresponding 
Maxwelrs equations are (Carmeli, 1977) 

Dq~ = ( O -  2e)q, 

a~, = (~ -2 /3 )q ,  

K = o = 0 ( 2 )  

where K, o, P, e, ~', and fl are the Newman-Penrose spin coefficients. 
The null gravitational field with I ~ as the propagation vector is char- 

acterized by (Szekeres, 1964) 

Cabcd ~- - 4 R e (  t~ l t a m  b l l [ c m  dl } (3) 
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where C~bca is the Weyl conformal curvature tensor. Here the Weyl scalar 4' 
can be identified as 

4' = -- C p q r s ~ P n q m r n  s 

We note that C~bcd I~= 0, C~bcdl d= O. Consequently I" can be identified 
as the propagation vector for the null gravitational field. The Riemann 
Christoffel curvature tensor and the Weyl projective curvature tensor for the 
coupled field are, respectively, 

a _ 1  a 
R b c  d -- V(  ~ d R b c - -  ~ a R b  d + g b c R a ' d  -- g b d R a . c )  

- R /6(6~gba - 6ffgbc)-- Re{ 4'V~'bV~d } 

where 

X is constant, and 

W;cd a 1 a __ 
a = Rbcd  + g . ( ~ c R b  d ~,~Rb,.) 

= x(L  - vgo ) 

V,, b = 21lambl 

(4) 

(5) 

3. T H E  F R E E D O M  C O N D I T I O N S  A N D  T H E  I D E N T I T I E S  

The investigation of the null symmetries in the later sections is carried 
out under certain conditions which are enumerated below: 

(a) Freedom Conditions with Respect to I a (Chandrasekhar, 1979). (1) If 
the tetrad Z~ is parallelly propagated with respect to I% then 

= rr = t = 0 (6a)  

(2) If the congruence I" is equal to a gradient field, then 

p = ~, ~" = ff + fl (6b) 

(b) Bianchi Identities for the Coupled Fields. The interaction between 
the null electromagnetic field and the null gravitational field is expressed 
through the Bianchi identities. By virtue of the freedom conditions and 
( 1 ) - ( 3 ) ,  the 11 Bianchi identities reduce to 

~ (q~qT)- 64' = (4/3 - r)4 '  - ~q~  (7a) 

O = 0 (7b) 

Oq, = 0 (7c) 

04'  = 0 (7d) 
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where D = 1~ A = n ~ ( O / O x ~ ) ,  and 6 =  m ~ ( O / O x ~ ) .  Thus from 
(7c), (7d) the Maxwell scalar q) and the Weyl scalar ~p are conserved with 
respect to I a. We note that (7b) simplifies (6b). 

(c) The N P  Equations for  the Coupled Fields. The 18 Ricci identities 
known as the NP equations are enumerated in Flaherty (1976). Using O = 0, 
freedom conditions and the defining relations (1), (3) of the fields under 
question, these NP equations yield the following 15 relations: 

D r  = D a =  Dfl = D ~  = D~ = 0 

DT = ra + ~fl 

6~ - 6t* = t~'~ + h ( z  - 4 f l )  

~ v  - A/} = ~,,r + ( , ~ - / ~ ( V  - 7 - # )  

8 r  = 2 f i r  

6r = 2 a t  

/ , ~ -  6 7  = - ( ~ + ~ ) a + ( 7 - 7 - g ) ~  

AX - & = - ( ~  + g ) a  - ( 3 ~  - , 7 ) h  + 2 , ~  - 

8 a -  @ = ~a+ ~ -  2a/~ 

3v - A/~ =/~2 + a)~+ (Y + Y)/* - 2fl~ + q ~  

(d) The Commutat ion Relations for  the Coupled Fields. Adopting free- 
dom conditions and O = 0, the four commutation relations become 

( A O  -- o h )  = ( 7  + y ) D  - "~6- ?6 

( S D  - 0 8 )  = rO 

( 8 6 -  68) = - ( / ~ - / * ) D  + ( ~ -  fl) 6 +  ( / ~ -  a)  6 

4. THE NULL S Y M M E T R I E S  OF T H E  C OUPL E D FIELDS 

The null symmetry of a tensor field f~iii~,ill with respect to !" is 
characterized by the functional form invariance of ~iii~,iii with respect to the 
infinitesimal point transformation 

x ' =  x ~ +P&,  lili  = 0 

where t is a parameter. This fact is expressed through the differential 
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equations 

�9 = o 

I 

where .L,e I represents the Lie derivative operator along I". 

I. Null Motions. Null motions are characterized by the Killing equa- 
tions 

.Vgoh = 0 (8) 
I a 

or la: h +lb: ,  = 0. In the Newman-Penrose formalism, we have (Chandra- 
sekhar, 1979) 

I0: b = (y + ?)lal  b - ( a + f l ) l o m  b - ( ( ~ + f l ) l . ~  b + ( e +  ~)l ,n b 

-- ~ m a l  b + f f m a m  b + f i m a m  b -- K m a n  b - T ~ a l  b + P m a m b  

+ O m a m  b -- K ~ a r l  b 

Hence the equations (8) on using (6a), (6b) become 

(V+7)l , lb+2pm(, ,mb)+(em,mh--2~l( ,mb))+C.C. = 0  (9) 

where I (, m b) = �89 (I, m b + I ~ m,  ) and C.C. indicates the complex conjugate of 
the preceding term. 

The equations (9) are valid iff 

7 + ? = 0 ,  o = ~ - = p = 0  (10) 

Hence (10) are the necessary and sufficient conditions for the existence of 
the motion with respect to the null vector ray I". 

The Null Symmetries which Degenerate into the Null Motions. The null 
conformal motions are defined by 

s162 = 2Agab (11) 
I 

where A is a scalar function. The freedom conditions (6a), (6b) together with 
(11) imply that A = 0 and hence this symmetry degenerates into the null 
motion. (Note that if the freedom conditions are not used, then A v~ 0 and so 
the degeneracy can be avoided.) 

It follows that the special conformal null motion (A:,  h = 0) and the 
null homothetic motion (A is constant) are also improper. Here a symmetry 
is termed proper, if it does not degenerate into any other symmetry. 

If. Affine Null Collineation. This symmetry is defined by (Katzin et al., 
1969) 

z~'rffc = O, i.e., l?c h + R~.~mbl m= 0 (12) 
I 
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For the null gravitational fields with I a as the propagation vector, we have 

Ra.c,,bl'=O (13) 

In NP formalism, the second (-order) covariant derivative of I a after 
imposing the freedom conditions (6a), (6b) reduces to 

I o;c~ = IOi~l~[ a (  3' + ~ ) +  2( 3' + ~)2 _ 2 ~  - 2 . r ]  

+ (l~ + n~162  + ~7)] 

+ ( H ~ m c [ -  a e -  e(33' + -7)+ o~ + p.] 

+Iambic[- d[(r + y)--27(3'  + y--/~) +2"r2~] 

+l~ + ~(3' + V -  ~ ) + 2 ~ e -  X0] 

+Vmbm~[gr  + p(3' + y -  ~)  +2fir  - 2,o] 

+ I~ - or  - or] + l % m A  - De] 

+ n~ O f -  r~]+ n~mbl~[- Or - or]+ n'mhm~[200 ] 

+ , , ~  p~ + .o ]  + m ~  ~ e -  e(33' + ,7)+ ~ + P"] 

+ malhnr 6'r -- pC] + m'~nblr De] 

+ m~ + 2 ~ ( - / -  ~)] 

+ m~m~l~[ ge + ~(3, + ~ -  g ) + 2 a e  - pX]  

+ m ~ l ~ [  ap + 2re] + m ~ m ~ [  - & -  4,~] 

+ m"mbm~[  - ~0 - O'r - oe ]  

+ m~mbmc[- 8 ~ -  20"~ + 2 0 ( ~ - / 3 ) ]  

+ marnb~r - ~ff-- 6.r - pC] + mOnb~c[ Dp] 

+ m'~mbnc[ ~ + P 2 ] + manb m c[ DO] + m"m~nr 

+ m a m b l ~ [ g r + o ( 3 ' + y - ~ ) + 2 ~ . r - o X ] ) + C . C .  (13') 

On using (1), (3) and (13') the relations (12) reduce for the coupled fields to 

o = p =  ~'---0 and A (y  + "~) + 2(3' + '~7)2 = 0 (14) 
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This completely characterizes the affine null collineations. 

Remark. This symmetry is proper since y + y 4:0 (in other words 
la: b 4: 0) while the homothetic motion demands that 3' + Y = 0. 

Symmetries which Degenerate to the Affine Null Collineations. Special 
null geodesic null collineation is defined by 

.ocprffc = g b c g a q h ; q ,  a;r s = 0 (15) 
i 

These equations are satisfied iff DA = AA = gA = ~A = 0, besides (14). It 
follows that A = const and so A;r = 0. This shows the degeneracy of the 
collineation to affine null collineation. 

It can be shown that the following five symmetries also reduce to the 
affine null collineation: 

(i) Special conformal null collineation: 

.~F[,~,. = 6~,A;c + 8~A;b - gbcg~kA;~, A;b c = 0 
I 

(ii) Conformal null collineation: 

.5~,Ft~c = 8hA ;c + ~A;b ~k a - -  g b c g  A;k 
I 

(iii) Null Geodesic null collineation: 

L~'Ffl, c = gbcgakA ; k 
I 

(iv) Special projective null collineation: 

s = ~A;c  + 6c~A ;b, A:b c = 0 
I 

(v) Projective null collineation: 

I 

Ill. Special Curvature Null Collineations. This symmetry is char- 
acterized by 

-= R" v,~ = 0 (16) ( er c) + 
I / ; d  

The relations (16) after a considerable simplification and on using (1), 
(3), (7b), (13') and freedom conditions (6a), (6b), reduce to 

o = p = T = 0 ,  D F = ~ F = O ,  and AF+ 3 F( 3 '  + y) = 0 (17) 

where 

F = A(3' + 7)+2(3 '  + 7) 2 

This completely characterizes the special curvature null collineation. 
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Remark. The special curvature null collineation for the coupled fields 
is proper, since A(y + -?)+2(y + .?)2 r 0. For the affine null collineation, it 
is necessary that A(T + ?)+2(~, + -?)2 = 0. 

IV. Curvature Null Collineation. This symmetry is defined by 

s = 0 (18) 
I 

For the coupled fields under question the equations (18) are valid when 
(and only when) 

o = p = r = 0, D[~[ = 0, and D~ = 0 (19) 

Hence (19) are the necessary and sufficient conditions for the existence of 
the curvature null collineation with respect to the null ray I a. 

Remarks. (1) The curvature null collineation is proper since there is no 
restriction on ~, + ? as in the special curvature null collineation. 

(2) The following two symmetries are improper, since they degenerate 
into curvature null collineation: (i) Weyl projective null collineation, 

~ 4 : . % d  = 0 
I 

(ii) The Weyl conformal null collineation, 

o •  Q 

C.bc d = 0 
I 

V. Ricci Null Collineation. It is characterized by 

L, eRab= 0 
I 

This symmetry is identically satisfied for the coupled fields 
freedom conditions (6a), (6b) since 

&~ = I~1 h [ D P  + 2 P ( e  + ~)] - P ~ l ~ m  h - P r l ~  h 
I 

- p ~ m a l  b - P K ~ l  h 

where P = �89 2. We have K= e=  0, due to (6a). D P  = 0, due to D~ = 0 
from (7c). 

(20) 

on using 
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Remarks. (1) This symmetry is proper since r 4= 0. The curvature null 
collineation demands that r = 0. 

(2) The family of contracted Ricci collineation with respect to the null 
congruence I" (which is defined by g"t'LP I Rob = 0) is also identically satisfied 
for the coupled fields. So this symmetry is also improper as it degenerates 
into the Ricci null collineation. 

(3) The symmetry of the null electromagnetic field defined by ,.~lT~b = 0 
is identical to the Ricci null collineation due to the fact that the stress- 
energy tensor for the electromagnetic field is tracefree. 

(4) The symmetries of the null electromagnetic field are different from 
the symmetries of either the free gravitational field or the gravitational 
potentials, since motion, curvature collineation, and Ricci collineation are 
proper. 

5. DISCUSSION 

The investigation of the null symmetries when the null electromagnetic 
field is chosen as 

where q~ = 2F~blam b, 

Ta b 1 2 
= ~.1'/'1 n,,nb 

Fat , = _ dP0nta~b] -- dPonlambl 

and the null electromagnetic field (with n" as the propagation vector) is 
characterized by 

Cabcd = - a R e {  ~bnt~mblnl,.mdl } 

~b = - Cabcdl~mblCm a 

can be carried out analogous to the procedures adopted here and the results 
are similar. 

Owing to the absence of convenient expressions for the Weyl tensor in 
the case of Petrov type I, II, D, and III, the investigation of the symmetries 
becomes complicated when the interaction with the electromagnetic fields 
(both a non-null and null) is examined. 
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